Copied to
clipboard

G = C22×C7⋊C12order 336 = 24·3·7

Direct product of C22 and C7⋊C12

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C22×C7⋊C12, C23.3F7, (C2×C14)⋊4C12, C142(C2×C12), C72(C22×C12), (C2×Dic7)⋊6C6, Dic74(C2×C6), C2.2(C22×F7), (C22×C14).3C6, C14.9(C22×C6), (C22×Dic7)⋊2C3, C22.11(C2×F7), C7⋊C32(C22×C4), (C22×C7⋊C3)⋊2C4, (C2×C7⋊C3).9C23, (C23×C7⋊C3).2C2, (C2×C14).11(C2×C6), (C22×C7⋊C3).11C22, (C2×C7⋊C3)⋊2(C2×C4), SmallGroup(336,129)

Series: Derived Chief Lower central Upper central

C1C7 — C22×C7⋊C12
C1C7C14C2×C7⋊C3C7⋊C12C2×C7⋊C12 — C22×C7⋊C12
C7 — C22×C7⋊C12
C1C23

Generators and relations for C22×C7⋊C12
 G = < a,b,c,d | a2=b2=c7=d12=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 336 in 108 conjugacy classes, 70 normal (11 characteristic)
C1, C2, C2, C3, C4, C22, C6, C7, C2×C4, C23, C12, C2×C6, C14, C14, C22×C4, C7⋊C3, C2×C12, C22×C6, Dic7, C2×C14, C2×C7⋊C3, C2×C7⋊C3, C22×C12, C2×Dic7, C22×C14, C7⋊C12, C22×C7⋊C3, C22×Dic7, C2×C7⋊C12, C23×C7⋊C3, C22×C7⋊C12
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C22×C4, C2×C12, C22×C6, F7, C22×C12, C7⋊C12, C2×F7, C2×C7⋊C12, C22×F7, C22×C7⋊C12

Smallest permutation representation of C22×C7⋊C12
On 112 points
Generators in S112
(1 5)(2 6)(3 7)(4 8)(9 16)(10 13)(11 14)(12 15)(17 62)(18 63)(19 64)(20 53)(21 54)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(28 61)(29 79)(30 80)(31 81)(32 82)(33 83)(34 84)(35 85)(36 86)(37 87)(38 88)(39 77)(40 78)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 101)(51 102)(52 103)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 89)(74 90)(75 91)(76 92)
(1 12)(2 9)(3 10)(4 11)(5 15)(6 16)(7 13)(8 14)(17 48)(18 49)(19 50)(20 51)(21 52)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 89)(37 90)(38 91)(39 92)(40 93)(53 102)(54 103)(55 104)(56 105)(57 106)(58 107)(59 108)(60 109)(61 110)(62 111)(63 112)(64 101)(65 78)(66 79)(67 80)(68 81)(69 82)(70 83)(71 84)(72 85)(73 86)(74 87)(75 88)(76 77)
(1 49 45 91 41 95 99)(2 96 92 50 100 42 46)(3 43 51 97 47 89 93)(4 90 98 44 94 48 52)(5 112 108 75 104 67 71)(6 68 76 101 72 105 109)(7 106 102 69 110 73 65)(8 74 70 107 66 111 103)(9 31 39 19 35 23 27)(10 24 20 32 28 36 40)(11 37 33 25 29 17 21)(12 18 26 38 22 30 34)(13 57 53 82 61 86 78)(14 87 83 58 79 62 54)(15 63 59 88 55 80 84)(16 81 77 64 85 56 60)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,5)(2,6)(3,7)(4,8)(9,16)(10,13)(11,14)(12,15)(17,62)(18,63)(19,64)(20,53)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,77)(40,78)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,101)(51,102)(52,103)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,89)(74,90)(75,91)(76,92), (1,12)(2,9)(3,10)(4,11)(5,15)(6,16)(7,13)(8,14)(17,48)(18,49)(19,50)(20,51)(21,52)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,89)(37,90)(38,91)(39,92)(40,93)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,110)(62,111)(63,112)(64,101)(65,78)(66,79)(67,80)(68,81)(69,82)(70,83)(71,84)(72,85)(73,86)(74,87)(75,88)(76,77), (1,49,45,91,41,95,99)(2,96,92,50,100,42,46)(3,43,51,97,47,89,93)(4,90,98,44,94,48,52)(5,112,108,75,104,67,71)(6,68,76,101,72,105,109)(7,106,102,69,110,73,65)(8,74,70,107,66,111,103)(9,31,39,19,35,23,27)(10,24,20,32,28,36,40)(11,37,33,25,29,17,21)(12,18,26,38,22,30,34)(13,57,53,82,61,86,78)(14,87,83,58,79,62,54)(15,63,59,88,55,80,84)(16,81,77,64,85,56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,16)(10,13)(11,14)(12,15)(17,62)(18,63)(19,64)(20,53)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,77)(40,78)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,101)(51,102)(52,103)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,89)(74,90)(75,91)(76,92), (1,12)(2,9)(3,10)(4,11)(5,15)(6,16)(7,13)(8,14)(17,48)(18,49)(19,50)(20,51)(21,52)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,89)(37,90)(38,91)(39,92)(40,93)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,110)(62,111)(63,112)(64,101)(65,78)(66,79)(67,80)(68,81)(69,82)(70,83)(71,84)(72,85)(73,86)(74,87)(75,88)(76,77), (1,49,45,91,41,95,99)(2,96,92,50,100,42,46)(3,43,51,97,47,89,93)(4,90,98,44,94,48,52)(5,112,108,75,104,67,71)(6,68,76,101,72,105,109)(7,106,102,69,110,73,65)(8,74,70,107,66,111,103)(9,31,39,19,35,23,27)(10,24,20,32,28,36,40)(11,37,33,25,29,17,21)(12,18,26,38,22,30,34)(13,57,53,82,61,86,78)(14,87,83,58,79,62,54)(15,63,59,88,55,80,84)(16,81,77,64,85,56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,16),(10,13),(11,14),(12,15),(17,62),(18,63),(19,64),(20,53),(21,54),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(28,61),(29,79),(30,80),(31,81),(32,82),(33,83),(34,84),(35,85),(36,86),(37,87),(38,88),(39,77),(40,78),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,101),(51,102),(52,103),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,89),(74,90),(75,91),(76,92)], [(1,12),(2,9),(3,10),(4,11),(5,15),(6,16),(7,13),(8,14),(17,48),(18,49),(19,50),(20,51),(21,52),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,89),(37,90),(38,91),(39,92),(40,93),(53,102),(54,103),(55,104),(56,105),(57,106),(58,107),(59,108),(60,109),(61,110),(62,111),(63,112),(64,101),(65,78),(66,79),(67,80),(68,81),(69,82),(70,83),(71,84),(72,85),(73,86),(74,87),(75,88),(76,77)], [(1,49,45,91,41,95,99),(2,96,92,50,100,42,46),(3,43,51,97,47,89,93),(4,90,98,44,94,48,52),(5,112,108,75,104,67,71),(6,68,76,101,72,105,109),(7,106,102,69,110,73,65),(8,74,70,107,66,111,103),(9,31,39,19,35,23,27),(10,24,20,32,28,36,40),(11,37,33,25,29,17,21),(12,18,26,38,22,30,34),(13,57,53,82,61,86,78),(14,87,83,58,79,62,54),(15,63,59,88,55,80,84),(16,81,77,64,85,56,60)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112)]])

56 conjugacy classes

class 1 2A···2G3A3B4A···4H6A···6N 7 12A···12P14A···14G
order12···2334···46···6712···1214···14
size11···1777···77···767···76···6

56 irreducible representations

dim11111111666
type++++-+
imageC1C2C2C3C4C6C6C12F7C7⋊C12C2×F7
kernelC22×C7⋊C12C2×C7⋊C12C23×C7⋊C3C22×Dic7C22×C7⋊C3C2×Dic7C22×C14C2×C14C23C22C22
# reps1612812216143

Matrix representation of C22×C7⋊C12 in GL8(𝔽337)

10000000
0336000000
0033600000
0003360000
0000336000
0000033600
0000003360
0000000336
,
3360000000
0336000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
0000000336
0010000336
0001000336
0000100336
0000010336
0000001336
,
1280000000
0129000000
0046004622291
0046462202910
00680291462910
0004629146022
00046068291291
00466829100291

G:=sub<GL(8,GF(337))| [1,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,336,336,336,336,336,336],[128,0,0,0,0,0,0,0,0,129,0,0,0,0,0,0,0,0,46,46,68,0,0,46,0,0,0,46,0,46,46,68,0,0,0,22,291,291,0,291,0,0,46,0,46,46,68,0,0,0,22,291,291,0,291,0,0,0,291,0,0,22,291,291] >;

C22×C7⋊C12 in GAP, Magma, Sage, TeX

C_2^2\times C_7\rtimes C_{12}
% in TeX

G:=Group("C2^2xC7:C12");
// GroupNames label

G:=SmallGroup(336,129);
// by ID

G=gap.SmallGroup(336,129);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-7,144,10373,887]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^7=d^12=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽